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ABSTRACT 

The detection of visible damage (i.e., cracking, concrete spalling and crushing, 
reinforcement exposure, buckling and fracture) plays a key role in post-
earthquake safety assessment of reinforced concrete (RC) building structures. 
In this study, a novel approach based on computer-vision techniques was 
developed for pixel-level multicategory detection of visible seismic damage of 
RC components. A semantic segmentation database was constructed from test 
photos of RC structural components. Series of datasets were generated from 
the constructed database by applying image transformations and data-
balancing techniques at the sample and pixel levels. A deep convolutional 
network (CNN) architecture was designed for pixel-level detection of visible 
damage. Two sets of parameters were optimized separately, one to detect 
cracks and the other to detect all other types of damage. A post-processing 
technique for crack detection was developed to refine crack boundaries, and 
thus improve the accuracy of crack characterization. Finally, the proposed 
vision-based approach was applied to test photos of a beam-to-wall joint 
specimen. The results demonstrate the accuracy of the vision-based approach 
to detect damage, and its high potential to estimate seismic damage states of 
RC components.

1 INTRODUCTION 

Post-earthquake safety assessment of building structures 
has played a critical role in emergency treatment and post-
hazard restoration of urban communities. For reinforced 
concrete (RC) buildings, post-earthquake safety assessment 
in the US (FEMA, 1998), Japan (JBDPA, 1997; MLIT, 2015) 
and China (CMC, 2016) require certified structural 
engineers or inspectors to visually inspect the damage state 
of individual buildings. This methodology is based on the 
relation between visible damage and performance 

degradation of structural components established from 
experimental data and observations of field performance. 
Although proven to be effective, this current procedure of 
safety assessment is time consuming and labor intensive. 
Furthermore, the evaluation results are reliant on the 
professional knowledge and experience of the engineers or 
inspectors (German et al., 2013), and thus might be 
influenced by human bias. With the advent of computer 
vision and machine learning, there is a high potential to 
develop a vision-based system for seismic damage 
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detection, which supports the engineers and inspectors to 
advance the current practice of post-earthquake safety 
assessment of building structures. 

Vision-based damage detection has been extensively 
studied in the field of structural health monitoring over the 
past few decades. Vision-based crack detection approaches 
using conventional image processing techniques (IPTs) 
have found applications in crack detection on the surface of 
concrete and asphalt. The conventional IPTs mainly 
include the thresholding-based approach (Cheng et al., 
2003; Fujita and Hamamoto, 2011; Nishikawa et al., 2012; 
Ying and Salari, 2010), the morphological approach (Iyer 
and Sinha, 2006; Nguyen et al., 2014) and the percolation-
based approach (Yamaguchi et al., 2008). Two factors, i.e., 
the clear contrast of gray levels between the cracks and 
background and the narrow, line-like geometry of cracks, 
are vital for the success of the conventional IPTs-based 
crack detection. Therefore, the accuracy of these methods 
strongly relies on photo shooting conditions and the 
complexity of background clutter and occlusions. 
Moreover, the conventional IPTs-based methods are not 
suited to detect other types of damage, such as concrete 
spalling. 

Over the past decade, machine learning techniques, 
including feature engineering, data clustering and 
classification, have been adopted to improve the flexibility 
and applicability of vision-based damage detection. 
Through feature engineering, a series of feature indexes, 
e.g., the geometric properties or the statistical indexes of 
color distributions, are defined and calculated for an area 
segmented from the input image. Then, by the application 
of machine learning algorithms for example the k-nearest 
neighbors (KNN) (Jahanshahi et al., 2013; Oliveira and 
Correia, 2008), support vector machine (SVM) (Chen et al., 
2017a; Chen et al., 2012; Jahanshahi et al., 2013; Li et al., 
2017; O'Byrne et al., 2014) and neural networks (NN) 
(Jahanshahi et al., 2013), the areas are clustered or classified 
based on the distribution of the feature indexes as one of the 
predefined damage categories. However, the success of 
these feature-based approaches relies on reasonable 
selection of pre-defined feature indexes, which requires 
considerable domain knowledge about the application 
scenarios. Therefore, these approaches are not suited for 
application to arbitrary damage categories in complex 
situations. 

More recently, the convolutional networks (CNNs), 
which can be regarded as the combination of automatic 
feature extraction and classification, have been applied to 
visible damage detection in civil engineering. Some 
researchers proposed crack detection methods using CNN-
based image classification (Cha et al., 2017; Ni et al., 2019), 
where the input image is firstly divided into a series of small 
image patches, which are then classified by the CNN as 
crack or non-crack. Other researchers developed the CNN-
based object detection algorithms (Beckman et al., 2019; Li 
et al., 2018; Maeda et al., 2018), where multiple areas of 
visible damage are identified and localized in the form of 
rectangle regions with bounding boxes, and classified as 
one of the target damage categories, including crack, 
spalling, rebar exposure or steel corrosion. The CNN-based 
image classification and object detection are both region-
level algorithms, i.e., visible damage is identified and 
localized from the input image with a series of image 
patches or bounding boxes. Such algorithms are incapable 
of segmenting the exact damage geometries from the input 
image, and thus, do not allow for quantitative assessment of 
damage for further analysis. For the purpose of quantitative 
analysis of visible damage, researchers developed pixel-
level methods to clearly identify the arbitrary geometries of 
various damage categories through CNN-based semantic 
segmentation (Choi and Cha, 2020; Zou et al., 2019). These 
pixel-level damage detection methods were successfully 
applied to the maintenance inspection of pavement (Bang 
et al., 2019; Zhang et al., 2018) and bridge piers (Jang et al., 
2020). Crack width and length can be calculated from the 
pixel-level detection results (Jang et al., 2020), which 
suggests high potential of these methods for further 
quantitative analysis. 

Different from structural health monitoring of 
infrastructures that aims to detect damage at the early 
stages, damage detection applied to post-earthquake 
assessment of building structures requires the investigation 
of moderate and severe damage in order to accurately 
estimate the severity of damage. Moreover, wide diversity 
of shooting conditions and background clutter and 
occlusions should be considered to cope with the complex 
environment of practical applications. Past research in this 
area has focused on damage evaluation based on the 
outward appearances of damaged buildings. The CNN-
based image classification was developed and applied for 
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collapse recognition (Gao and Mosalam, 2018; Xiong et al., 
2020; Yeum et al., 2018) and damage degree evaluation 
(Ishii et al., 2018) of building structures. Pixel-level damage 
detection of building façades is achieved through CNN-
based semantic segmentation (Chida and Takahashi, 2020; 
Hoskere et al., 2018). However, limited effort has been 
placed on damage detection at the component level. 
Recently, a pixel-level damage detection model for bridge 
piers (Liang, 2019) was shown to segment damage 
geometries from the background, but this study fell short of 
distinguishing the detailed damage categories. 

To achieve pixel-level detection and quantitative 
analysis of multiple seismic damage categories for RC 
structural components, further development is required in 
the following two aspects: (1) In addition to cracks, pixel-
level detection of concrete spalling and crushing, 
reinforcement exposure, buckling and fracture is needed 
because quantitative estimate of these seismic damage 
categories is essential to the assessment of seismic 
performance degradation of damaged RC components and 
post-earthquake safety of RC buildings; (2) Wide diversity 
in terms of failure modes of RC components, shooting 
conditions of input images as well as background clutter 
and occlusions should be considered for the effective 
detection of typical seismic damage. 

The objectives of this study are to establish the 
techniques of computer vision (1) to localize, classify and 
segment typical seismic damage of RC components; and (2) 
to quantify and characterize the detected cracks and other 
damage. The major contribution of this study is threefold: 
(1) Data balancing techniques were proposed/developed to 
address the data imbalance issue of the constructed 
database, and stratified sampling was adopted to improve 
the recognition performance of complex background 
clutter and occlusions for the trained CNNs. (2) Two CNNs, 
i.e., the Crack-Net and 4Category-Net, were proposed and 
trained for pixel-level detection of cracks and other typical 
seismic damage categories (i.e., concrete spalling and 
crushing, reinforcement exposure, buckling and fracture), 
to enable quantitative assessment of seismic performance 
degradation of damaged RC components. (3) An effective 
yet simple post-processing technique was developed for 
Crack-Net outputs, which refined the boundaries of the 
detected cracks and thus enabled subsequent 
characterization of crack width to be accurate. 

2 OVERVIEW OF CONVOLUTIONAL 
NETWORK OPTIMIZATION 

The convolutional networks (CNNs) and the corresponding 
optimization, which form the basis of this study, are briefly 
described in this section. A convolutional network is a 
hierarchical combination of a few basic functions, which 
are called layers in CNN terminology, such as the 
convolutional layer, the ReLU layer and the pooling layer. 
The configuration of how these basic layers are organized 
and ensembled is referred to as the architecture of a CNN. 
Mathematically, a CNN can be interpreted as a complex 
function defined by its architecture, and can be formulated 
using symbolic notations as in Equation (1). 
 𝑷𝑷 = 𝒇𝒇(𝑿𝑿;𝜽𝜽) (1) 

In Equation (1), 𝒇𝒇(⋅)  is the function defined by the 
architecture, 𝑿𝑿 and 𝑷𝑷 are the (network) input and output, 
respectively, and 𝜽𝜽 denotes the set of (network) parameters. 

For a CNN used for semantic segmentation, the input 𝑿𝑿 
is an image with shape 𝐻𝐻 × 𝑊𝑊 × 𝑐𝑐, where 𝐻𝐻 and 𝑊𝑊 denote 
the height and width of the image in pixel-unit, 
respectively, and 𝑐𝑐 denotes the number of color channels 
(e.g., 𝑐𝑐 = 3 for an RGB image). The output of a CNN, 𝑷𝑷, 
consists of 𝐻𝐻 × 𝑊𝑊 probability distributions, as in Equations 
(2) and (3), where (𝑝𝑝𝑘𝑘)𝑖𝑖,𝑗𝑗  denotes the probability that the 
pixel at the 𝑖𝑖-th row and 𝑗𝑗-th column belongs to category 𝑘𝑘, 
and 𝐾𝐾  denotes the number of categories for a certain 
segmentation task. The (segmentation) prediction 𝒀𝒀�  is 
further derived from the output 𝑷𝑷 through Equations (4) 
and (5). 
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 (4) 

 𝑦𝑦�𝑖𝑖,𝑗𝑗 = argmax
𝑘𝑘=0,1,… ,𝐾𝐾−1

(𝑝𝑝𝑘𝑘)𝑖𝑖,𝑗𝑗 (5) 

In semantic segmentation, a pair of an input image 𝑿𝑿 
and its corresponding pixel-level annotation (i.e., the 
ground truth) 𝒀𝒀 , which is fed to a CNN for training or 
testing, is referred to as a sample. As formulated in 
Equation (6), the annotation 𝒀𝒀  of an input image 𝑿𝑿  is a 
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matrix with shape 𝐻𝐻 × 𝑊𝑊 , where 𝑦𝑦𝑖𝑖,𝑗𝑗  denotes the actual 
category of the pixel at the 𝑖𝑖-th row and 𝑗𝑗-th column. 
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 𝑦𝑦𝑖𝑖,𝑗𝑗 ∈ {0, 1, … ,𝐾𝐾 − 1} (6) 

The training of a CNN is conducted to optimize its 
parameters 𝜽𝜽  according to the available data (i.e., the 
dataset), such that the prediction 𝒀𝒀� of the CNN could be as 
identical as possible with the ground truth 𝒀𝒀 for a given 
input 𝑿𝑿 . The dataset, consisting of series of samples, is 
divided into two subsets, i.e., the training set and the test 
set. The training set is used to optimize the network 
parameters, while the test set is used to validate the 
prediction performance of the trained CNN. The loss 
function is introduced for the training of a CNN, which is 
defined as the mean value of prediction errors of all pixels 
in the training set, as in Equation (7). The prediction error 
of the CNN for a pixel is measured by an error function, 
such as the Negative Log-Likelihood (NLL) formulated in 
Equation (8), which is the commonly-used error function 
for CNNs. 

 𝐿𝐿 =
1
𝑛𝑛
� 𝑙𝑙(𝒑𝒑𝑠𝑠,𝑦𝑦𝑠𝑠)

𝑛𝑛−1

𝑠𝑠=0
 (7) 

 𝑙𝑙(𝒑𝒑𝑠𝑠,𝑦𝑦𝑠𝑠) = − ln�𝑝𝑝𝑦𝑦𝑠𝑠�𝑠𝑠 (8) 

In Equations (7) and (8), 𝒑𝒑𝑠𝑠 and 𝑦𝑦𝑠𝑠  denote the probability 
distribution and ground truth category of a pixel, 
respectively; and 𝑛𝑛  denotes the number of pixels in the 
training set. 

The training of a CNN is achieved by the gradient 
descent method, in which the parameters are iteratively 
optimized to minimize the loss function defined in 
Equation (7). However, because a large number of images 
may be included in a dataset for computer vision tasks, it is 
computationally impractical to calculate the mean value of 
errors and its corresponding gradient on the entire training 
set at each iteration. A compromise to overcome this 
difficulty is the stochastic gradient descent (SGD) method, 
in which a batch, i.e., a small number of samples randomly 
selected from the training set, is established at each 
iteration, and the loss function and its gradient are 
calculated for the batch. The loss function at iteration 𝑡𝑡 for 
the training of a CNN using SGD can therefore be 
formulated as in Equation (9). The model parameters are 

then updated by the reverse of the gradient, multiplied by a 
small step size (i.e., the learning rate), 𝛼𝛼 , as shown in 
Equation (10). 

 𝐿𝐿𝑡𝑡 =
1
𝑛𝑛b
� 𝑙𝑙(𝒑𝒑𝑠𝑠,𝑦𝑦𝑠𝑠)

𝑛𝑛b−1

𝑠𝑠=0
 (9) 

 𝜽𝜽𝑡𝑡+1 = 𝜽𝜽𝑡𝑡 − 𝛼𝛼
𝜕𝜕𝐿𝐿𝑡𝑡
𝜕𝜕𝜽𝜽𝑡𝑡

= 𝜽𝜽𝑡𝑡 − 𝛼𝛼
1
𝑛𝑛b
�

𝜕𝜕𝑙𝑙(𝒑𝒑𝑠𝑠,𝑦𝑦𝑠𝑠)
𝜕𝜕𝜽𝜽𝑡𝑡

𝑛𝑛b−1

𝑠𝑠=0
 (10) 

In Equations (9) and (10), 𝑛𝑛b denotes the number of pixels 
in a batch. 

The vanilla SGD can reduce the computing time 
significantly, but the gradient calculated by vanilla SGD is 
rather noisy and may cause slow convergence in the 
training. Several algorithms are proposed for a more 
effective training, such as Adam (Kingma and Ba, 2015) and 
RMSProp (Tieleman and Hinton, 2012) that was used for 
the training of CNNs in this study. 

The trained CNN is used to produce the prediction of a 
new-coming input image, which is referred to as the 
inference of an image. One can understand from the CNN 
optimization that the prediction performance of a trained 
CNN is dependent on its architecture and the generality 
and representativity of the dataset. 

3 DATABASE FOR VISIBLE DAMAGE OF 
RC COMPONENTS 

A database which has sufficient number of labeled images 
and is representative of the application scenario is critical 
for any CNN-based system. A few databases have been 
established  for the development of post-earthquake 
damage detection (Gao and Mosalam, 2018; Sajedi and 
Liang, 2020). In the database by Gao and Mosalam (2018), 
the samples were labeled for image classification, and were 
not annotated at the pixel level. In the database by Sajedi 
and Liang (2020), although samples were annotated at the 
pixel level, the damage geometries were identified without 
further distinction among different damage categories. To 
fulfill the long-term objective of quantitative assessment of 
typical seismic damage categories, in this study, images of 
damaged RC structural components were collected and 
annotated for multiple damage categories at the pixel level, 
and a semantic segmentation database was constructed for 
visible seismic damage categories of RC components. The 
images in the database are diverse in terms of visual 
appearances of seismic damage, shooting conditions (e.g., 
lighting conditions, scales and viewpoints), and 
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background clutter and occlusions. Database construction 
is divided into three key steps: (1) Definition of target 
categories of visible damage; (2) Image collection for the 
representation of selected damage categories; (3) Manual 
annotation of collected images. Special issues and 
considerations associated with these steps are discussed in 
this section. 

3.1 Definition of target damage categories 

Seismic damage evaluation manuals define damage states 
and repair methods according to visible damage of RC 
components. For example, in the U.S., FEMA P-58 (FEMA, 
2011) defines the damage states of slender RC walls as 
follows: Damage state DS1 (repair method: cosmetic repair) 
is associated with initial concrete cracking; DS2 (repair 
method: epoxy injection and patching) is associated with 
vertical cracks and spalling of cover concrete that does not 
reveal the longitudinal reinforcement; DS3 (repair method: 
replacement of concrete) is associated with spalling of cover 
concrete that exposes the longitudinal reinforcement; and 
DS4 (repair method: replacement of steel reinforcement 
and concrete) is associated with web concrete crushing, 
boundary element core crushing, rebar buckling or 
fracture. The Japanese standard for damage evaluation of 
seismic damaged buildings (MLIT, 2015) also specifies the 
damage states of RC components linked to their visible 
seismic damage, as illustrated in Figure 1. 

Therefore, for effective estimation of the damage states, 
this paper categorizes visible damage as (a) concrete 
cracking, (b) cover concrete spalling, (c) exposure of 
reinforcement, (d) crushing of concrete, and (e) buckling 
and fracture of reinforcement. 

3.2 Image collection and annotation 

Seventy-six images with an average size of 3940 ×  3940 
pixels were selected to constitute the database. These 
images were selected from test photos of RC specimens 
including shear walls and joints, which were designed and 
tested by the authors. The test specimens ranged from mid-
scale to full-scale, and were subjected to quasi-static cyclic 
loads following the loading protocol specified in Chinese 
specification for seismic test of buildings (CMC, 2015). The 
damage and failure modes of the specimens represent the 
seismic damage of RC components, and the images from 
experimental tests share similar visual characteristics of 
damage as those from post-earthquake field surveys. Figure 
2 shows the diversity of the constructed database in terms 
of texture of concrete surface, lighting conditions, scales, 
viewpoints, and background clutter and occlusions. 
Diversity of the collected images was ensured through the 
following procedure. First, test specimens with a variety of 
section shapes (e.g., rectangular-shaped walls, T-shaped 
walls and I-shaped walls), shear-to-span ratios (in a range 
of 1.06 to 2.50), reinforcement configurations and failure 

 
FIGURE 1. The relation between the visible damage and damage state of RC components (MLIT, 2015). 

 
(a) Texture of concrete surface 

 
(b) Lighting conditions 

 

 
(c) Scale 

 
(d) Viewpoints 

 

 
(e) Background clutter and occlusions 

 

 FIGURE 2. The diversity of the constructed database. 
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modes (e.g., flexural failure, shear failure, flexural-shear 
failure and sliding failure) were collected. Second, during 
the cyclic loading tests, cameras with different 
configurations were set up to shoot in diverse lighting 
conditions (see Figure 2(b)), scales (with a resolution 
ranging from 0.79 to 5.13 pixel/mm, see Figure 2(c)) and 
viewpoints (see Figure 2(d)). Third, image selection was 
conducted so that various background clutter and 
occlusions, such as wires, measurement devices and 
loading setups, would be included into the database, as 
demonstrated in Figure 2(e). 

Manual annotation of the selected images was 
conducted by individuals who followed a comprehensive 
guideline. The guideline defined visual characteristics for 
each target category, and rules for pixel-level annotation to 
ensure the preciseness and consistency of manual 
annotation. 

3.3 From database to datasets 

In the context of this research, the term “database” denotes 
a set of images which occupy arbitrary sizes, and the term 
“dataset” denotes a set of samples with a standard, uniform 
size of 300 × 300 pixels. 

Architectures of CNNs like FCN (Long et al., 2015), 
where each operation is reformulated as the convolution 
operation, allow images with arbitrary sizes to be fed to the 
networks. However, because the images in the database are 
large averaging 3940 × 3940 pixels, training CNNs directly 
through the database images would result in major 
drawbacks that significantly affect the training efficiency 
and recognition performance (i.e., detection accuracy). 
First, in terms of semantic segmentation, a fully 
convolutional architecture accepting large-size images as 
input is memory expensive. As an example, FCN-8s 
requires more than 4GB of memory for a sample with 1024 
× 1024 pixels. The memory requirement of a sample limits 
the batch size to two samples for a NVIDIA GeForce GTX 
1080 Ti GPU, which has a memory of 11GB and is a 
commonly-used GPU for general computing. Naturally, for 
an overly small batch size, the gradient of the loss function 
would be inaccurate, and training process will not 
effectively converge. Second, uniform-size samples 
facilitate the design of the convolutional network and 
simplify the programming of the proposed vision-based 
approach. 

In this research, samples of 300 ×  300 pixels were 
generated from images of the database to form a series of 
datasets, and were fed directly to the networks as training 
or test samples. As illustrated in Figure 3, sample 
candidates for the datasets are generated following a 
flowchart where image transformations are adopted to 
expand data diversity with respect to affine transformations 
and lighting conditions. Diversity of the datasets is enriched 
by randomly assigning the center point, rotation angle, 
scaling factor and flipping axis. Hue and Saturation 
adjustment and Gamma correction are further applied to 
simulate minor fluctuations of lighting conditions. 

To guarantee the independence between training 
samples and test samples, images in the database are 
divided into two sub-databases, i.e., the training sub-
database and test sub-database. Approximately 80% of 
images (i.e., 61 images) that are randomly selected from the 
database are included in the training sub-database, while 
the rest of images are left in the test sub-database. 
Afterwards, the training samples and test samples are 
generated from the training sub-database and test sub-
database, respectively. 

Separate datasets were generated for the crack category 
and the other four damage categories for the following two 
reasons: (1) Unlike the other four damage categories, its 
narrow line-shaped and delicate appearance forms its 
unique small-scale visual characteristics; (2) The crack 
category is relatively independent in spatial distribution, 
and limited contextual connections are shared with the 
other damage categories. In this study, datasets generated 
for the detection of crack and the other four damage 
categories are named with the prefix “Crack” and 
“4Category”, respectively. 

 
FIGURE 3. Flowchart for generation of sample candidates. 
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3.4 Data balancing 

Significant difference in the number of samples and pixels 
of different target categories, i.e., data imbalance, is 
observed in the constructed database. Data imbalance is a 
common problem in CNNs and has major effect on the 
performance of a CNN-based system (Buda et al., 2018). At 
the sample level, the number of images which contain 
crushing, buckling and fracture categories is much less than 
the images containing other damage categories, since 
severe damage occurred only at the end of experimental 
testing. Moreover, the spatial distribution of each damage 
category leads to severe data imbalance at the pixel level. 
The pixels of background are dominant in the database, and 
for most image samples, the pixels of concrete damage (i.e., 
spalling and crushing) occupy much larger area than the 
pixels of reinforcement damage (i.e., exposure, buckling 
and fracture). 

Data imbalance can extensively affect the training 
process (Buda et al., 2018). For instance, if one category is 
missing in a training batch, i.e., no damage area of the 
category is contained in any sample, the model parameters 
will be updated without taking account of the influence on 
this category, and consequently, the resulting CNN model 
will have no capability of detecting this category from the 
images. 

In this study, techniques for data preparation and 
training of CNNs, including the sample-level and pixel-
level data balancing and the background recognition 
improvement, were proposed/developed to mitigate data 
imbalance. The flowchart of the proposed CNN-based 
damage detection approach is demonstrated in Figure 4, 
where data balancing techniques functioned at different 

stages are highlighted. Combined use of these techniques 
allowed the CNNs to achieve balanced recognition 
performance for the target damage categories as well as 
improved recognition of background clutter and occlusions. 
Detailed explanation and theoretical formulation of these 
techniques are provided in this subsection. 

3.4.1 Sample-level data balancing 
The key of mitigating data imbalance at the sample level is 
to ensure that sufficient samples of each damage category 
are contained in the dataset, such that samples of each 
category will be included in any of the randomly selected 
batches. For this purpose, category-existence examination 
was conducted on sample candidates before including them 
in the datasets. For the crack category, a sample candidate 
generated from the database, following the procedure of 
Figure 3, was accepted as a sample of the dataset Crack-DS 
only if cracks were contained. To construct the dataset 
4Category-DS, two groups of samples, denoted as SpEx-
Group (Spalling / Exposure Group) and CrBk-Group 
(Crushing / Buckling Group), were firstly generated with 
category-existence examination (see Figure 4). Different 
sampling rates were assigned for the generation of the 
SpEx-Group and CrBk-Group, in order to ensure balance in 
size of the two groups. Dataset 4Category-DS was then 
constructed by combining the SpEx-Group and CrBk-
Group. Statistical information of the resulted datasets is 
listed in Table 1. 

To validate data balancing of 4Category-DS, the statistics 
of the number of samples of category 𝑘𝑘 in a batch (i.e., 𝑁𝑁b,𝑘𝑘), 
including the mean value, standard deviation and the 
probability of no more than 8 samples (25% of the batch 
size) of category 𝑘𝑘 in a batch, were calculated according to 
Equations (11) - (15). 

 
FIGURE 4. Flowchart of CNN-based damage detection and the corresponding data balancing techniques. 
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 𝑃𝑃�𝑁𝑁b,𝑘𝑘 = 𝑖𝑖�𝑁𝑁,𝑁𝑁𝑘𝑘 ,𝑁𝑁b� =
�𝑁𝑁 − 𝑁𝑁𝑘𝑘
𝑁𝑁b − 𝑖𝑖 � ⋅ �

𝑁𝑁𝑘𝑘
𝑖𝑖 �

� 𝑁𝑁𝑁𝑁b
�

 (11) 

 𝐸𝐸𝑁𝑁b,𝑘𝑘 = �𝑃𝑃�𝑁𝑁b,𝑘𝑘 = 𝑖𝑖�𝑁𝑁,𝑁𝑁𝑘𝑘,𝑁𝑁b� × 𝑖𝑖
𝑁𝑁b

𝑖𝑖=0

 (12) 

 𝐸𝐸�𝑁𝑁b,𝑘𝑘 �
2 = �𝑃𝑃�𝑁𝑁b,𝑘𝑘 = 𝑖𝑖�𝑁𝑁,𝑁𝑁𝑘𝑘,𝑁𝑁b� × 𝑖𝑖2

𝑁𝑁b

𝑖𝑖=0

 (13) 

 𝐷𝐷𝑁𝑁b,𝑘𝑘 = �𝐸𝐸�𝑁𝑁b,𝑘𝑘 �
2 − �𝐸𝐸𝑁𝑁b,𝑘𝑘 �

2
 (14) 

 𝑃𝑃�𝑁𝑁b,𝑘𝑘 ≤ 8� = �𝑃𝑃�𝑁𝑁b,𝑘𝑘 = 𝑖𝑖�𝑁𝑁,𝑁𝑁𝑘𝑘,𝑁𝑁b�
8

𝑖𝑖=0

 (15) 

In Equations (11) - (15), 𝑁𝑁 is the number of samples in the 
training set of 4Category-DS, 𝑁𝑁b  denotes the number of 
samples in a batch, which is 32 in this study, 𝑁𝑁𝑘𝑘 and 𝑁𝑁b,𝑘𝑘 
are the number of samples of category 𝑘𝑘 in the training set 
and in a batch, respectively. The computed results are listed 
in Table 2. 

The mean value 𝑁𝑁b,𝑘𝑘 for each category ranges from 16.2 
to 31.9 (i.e., approximately 50% to 100% of the batch size), 
and the probability that any batch includes more than 8 
samples for each category is over 99.7%. Data balancing is 
achieved at the sample level through category-existence 
examination. 

3.4.2 Background recognition improvement 
By prioritizing category-existence examination, the 
aforementioned procedure for sample-level data balancing 
would result in lack of background clutter and occlusions 
in the datasets. There is a concern that models trained by 
these datasets may be incapable of distinguishing 
background clutter and occlusions from damage. Simply 
including more samples with background category is 
unfavorable, because it would harm sample-level data 
balancing. A method for batch construction using stratified 
sampling is proposed to solve this puzzle. In this method, 
samples are generated without category-existence 
examination to construct (background-) extended datasets, 
denoted as Crack_Ext-DS and 4Category_Ext-DS. The 
datasets Crack-DS and 4Category-DS, explained in Section 
3.4.1, would be referred to as restricted datasets for better 
clarity. Statistical information of the datasets is listed in 
Table 3. A pair of restricted and extended datasets is used 
during the training process to assemble a batch at an 
iteration, where samples in the batch are selected using 
stratified sampling, i.e., 𝑁𝑁brst  samples come from the 
restricted dataset (i.e., the restricted sub-batch) and 𝑁𝑁bext 
samples come from the extended dataset (i.e., the extended 
sub-batch). 

In this research, 𝑁𝑁brst = 𝑁𝑁bext =  32, and therefore a 
batch includes 64 samples. Through stratified sampling, 
samples of damage categories and background category are 
included in any batch simultaneously. 

3.4.3 Pixel-level data balancing 
Even if sample-level data balancing is achieved, data 
imbalance at the pixel level alone can hinder and stagnate 
the training process. A method was developed by Sajedi and 
Liang (2020), which functions in the inference phase to 

TABLE 1. Statistical information of 4Category-DS and Crack-DS. 

Dataset Category 
Number of samples 
(Training / Test set) 

Portion of pixels 
in training set 

4Category-DS 

Background 3539 / 787 69.89% 
Spalling 3532 / 782 15.83% 

Exposure 2110 / 497 1.15% 
Crushing 1850 / 370 9.43% 

Buckling and 
Fracture 

1793 / 365 3.70% 

Total 3545 / 787 - 

Crack-DS 
Background 

2931 / 523 
98.07% 

Crack 1.93% 
 

TABLE 2. Statistics of the number of samples of damage categories in 
a batch. 

 Category 𝐸𝐸𝑁𝑁b,𝑘𝑘 𝐷𝐷𝑁𝑁b,𝑘𝑘  𝑃𝑃(𝑁𝑁b,𝑘𝑘 ≤ 8) 
Spalling 31.9 0.3 0 

Exposure 19.0 2.8 7.3×10-5 
Crushing 16.7 2.8 1.6×10-3 

Buckling and 
Fracture 

16.2 2.8 2.8×10-3 

 

TABLE 3. Statistical information of the extended datasets. 

Dataset Category 
Number of samples 
(Training / Test set) 

Portion of pixels 
in training set 

4Category_Ext
-DS 

Background 3528 / 819 94.30% 
Spalling 968 / 179 3.15% 

Exposure 282 / 62 0.24% 
Crushing 308 / 36 1.58% 

Buckling and 
Fracture 

288 / 35 0.73% 

Total 3530 / 819 - 

Crack_Ext-DS 
Background 2782 / 487 99.35% 

Crack 1241 / 207 0.65% 
Total 2782 / 487 - 
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minimize the negative impact of data imbalance. In this 
study, a different method is proposed that mitigates the 
pixel-level data imbalance in the training process of a CNN. 

The problem of pixel-level data imbalance can be 
revealed by the loss function in Equation (9), which can be 
organized as an ensemble among categories, as expressed in 
Equation (16). 

 𝐿𝐿𝑡𝑡 =
1
𝑛𝑛b
� � 𝑙𝑙(𝒑𝒑𝑠𝑠,𝑘𝑘)

𝑛𝑛b,𝑘𝑘−1

𝑠𝑠=0

𝐾𝐾−1

𝑘𝑘=0
  

 𝐿𝐿𝑡𝑡 = �
𝑛𝑛b,𝑘𝑘

𝑛𝑛b

𝐾𝐾−1

𝑘𝑘=0
�

1
𝑛𝑛b,𝑘𝑘

� 𝑙𝑙(𝒑𝒑𝑠𝑠,𝑘𝑘)
𝑛𝑛b,𝑘𝑘−1

𝑠𝑠=0
�  

 𝐿𝐿𝑡𝑡 = �
𝑛𝑛brst,𝑘𝑘 + 𝑛𝑛bext,𝑘𝑘
𝑛𝑛brst + 𝑛𝑛bext

𝐾𝐾−1

𝑘𝑘=0
�

1
𝑛𝑛b,𝑘𝑘

� 𝑙𝑙(𝒑𝒑𝑠𝑠,𝑘𝑘)
𝑛𝑛b,𝑘𝑘−1

𝑠𝑠=0
�  

 
𝐿𝐿𝑡𝑡 = � �𝜌𝜌rst

𝑛𝑛brst,𝑘𝑘
𝑛𝑛brst

+ 𝜌𝜌ext
𝑛𝑛bext,𝑘𝑘
𝑛𝑛bext

�
𝐾𝐾−1

𝑘𝑘=0

⋅ �
1
𝑛𝑛b,𝑘𝑘

� 𝑙𝑙(𝒑𝒑𝑠𝑠,𝑘𝑘)
𝑛𝑛b,𝑘𝑘−1
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� 

(16) 

 𝜌𝜌rst =
𝑛𝑛brst

𝑛𝑛brst + 𝑛𝑛bext
=

𝑁𝑁brst
𝑁𝑁brst + 𝑁𝑁bext

 (17) 

 𝜌𝜌ext =
𝑛𝑛bext

𝑛𝑛brst + 𝑛𝑛bext
=

𝑁𝑁bext
𝑁𝑁brst + 𝑁𝑁bext

 (18) 

In Equation (16), 𝑛𝑛b, 𝑛𝑛brst and 𝑛𝑛bext denote the number of 
pixels in the current batch, the restricted sub-batch and the 
extended sub-batch, and 𝑛𝑛b,𝑘𝑘, 𝑛𝑛brst,𝑘𝑘 and 𝑛𝑛bext,𝑘𝑘 denote the 
corresponding numbers for the category-𝑘𝑘 pixels. 𝜌𝜌rst and 
𝜌𝜌ext  represent the portion of restricted and extended 
samples in the batch (see Equations (17) and (18)), which 
are both 0.5 in this study. 

It should be noticed that the expression 𝑛𝑛brst,𝑘𝑘/𝑛𝑛brst 
represents the portion of the category- 𝑘𝑘  pixels in the 
restricted sub-batch, and can be considered as an 
approximation of the category- 𝑘𝑘  pixels in the entire 
training set of the restricted dataset, 𝑛𝑛rst,𝑘𝑘/𝑛𝑛rst, where 𝑛𝑛rst 
and 𝑛𝑛rst,𝑘𝑘 denote the number of the pixels and the category-
𝑘𝑘  pixels in the training set of the restricted dataset, 
respectively. 

The term 𝑛𝑛b,𝑘𝑘/𝑛𝑛b measures the contribution of category 
𝑘𝑘 to the loss function and the influence over the gradient 
updating. Gradients derived from the category with a small 
portion of pixels is likely to be neglected or even reversed, 
which would result in the indistinguishability of the model 
for the small-portion category. 

The pixel-level data imbalance can be solved by 
reweighting each category in the loss function, following 
Eigen and Fergus (2015), as expressed in Equation (19). The 

weight factor for category 𝑘𝑘, 𝛼𝛼𝑘𝑘, is taken as Equation (20), 
which is the reciprocal of the mean portion of category-𝑘𝑘 
pixels in a batch divided by the number of categories, 𝐾𝐾. 

 𝐿𝐿𝑡𝑡,w = � 𝛼𝛼𝑘𝑘 ⋅
𝑛𝑛b,𝑘𝑘

𝑛𝑛b

𝐾𝐾−1

𝑘𝑘=0
�

1
𝑛𝑛b,𝑘𝑘

� 𝑙𝑙(𝒑𝒑𝑠𝑠,𝑘𝑘)
𝑛𝑛b,𝑘𝑘−1

𝑠𝑠=0
� (19) 

 𝛼𝛼𝑘𝑘 =
1
𝐾𝐾
⋅ �𝜌𝜌rst

𝑛𝑛rst,𝑘𝑘
𝑛𝑛rst

+ 𝜌𝜌ext
𝑛𝑛ext,𝑘𝑘
𝑛𝑛ext

�
−1

 (20) 

The reweighted loss function can be viewed as the 
average of errors over categories instead of over pixels, as in 
Equation (21). 
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4 DAMAGE DETECTION MODEL 

4.1 Convolutional network for semantic 
segmentation 

In general, the architecture of CNNs used for semantic 
segmentation is composed of the encoder, decoder and a 
series of skip-layer data flows, such as skip connections 
used in U-Net (Ronneberger et al., 2015) and pooling 
indices used in SegNet (Badrinarayanan et al., 2017). In 
semantic segmentation, the encoder extracts visual features 
of multiple scales and coarsely predicts the categories of 
each region in the input image. Such prediction is then 
refined by the decoder to the size of the input. The 
information of multiscale local features is transferred 
through skip-layer data flows from the encoder to the 
decoder to assist the reconstruction of a finer prediction 
with respect to the local boundaries between the areas of 
various categories. 

Major differences among various CNNs for 
segmentation lie in the design of the decoders and skip-
layer data flows, where different techniques are utilized to 
refine the prediction generated by the encoder. The state-
of-art architectures including FCN (Long et al., 2015), U-
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Net (Ronneberger et al., 2015), DeepLab (Chen et al., 2017b) 
and SegNet (Badrinarayanan et al., 2017) were examined 
and compared during the pre-test. The 8-time (8 × ) 
interpolation, applied in DeepLab to construct the final 
prediction, results in the incapability of DeepLab of 
capturing detailed boundaries of delicate objects (Chen et 
al., 2017b), such as the narrow, line-shaped areas of cracks. 
Different types of skip-layer data flows are utilized in FCN, 
SegNet and U-Net: In FCN, multiscale features in the 
encoder are compressed through convolutional layers 
before transferred to the decoder; in SegNet, pooling indices 
of pooling layers are transferred from the encoder to the 
decoder to assist prediction refinement; and in U-Net, 
multiscale features extracted in the encoder are directly 
transferred and concatenated with features in the decoder 
with modification or compression. Compared with FCN 
and SegNet, the type of skip-layer data flows used in U-Net 
involves more parameters to be trained, which makes U-
Net less efficient. Nevertheless, U-Net is selected for this 
study because the intact feature transferring is beneficial for 
detecting delicate boundaries of cracks and rebars. 

4.2 Damage-Net 

In this study, a deep CNN architecture, named as Damage-
Net, is proposed for visible damage detection of RC 
components. The architecture is based on U-Net, while 
adaptive improvements are carried out in terms of 
flexibility and training efficiency. First, the output 
prediction in U-Net is not of the same size as the input 
image, which makes the data pre- and post-processing 
cumbersome. In the proposed Damage-Net, layer 
configurations, such as padding size and stride size, are 
adjusted to ensure that the output size is equal to the input 
size. Second, the encoder of U-Net is not inherited from any 
known architecture of classification CNNs, therefore the 
parameters need to be trained from scratch. Training from 
scratch requires more training data, and may be confronted 
with issues like over-fitting and slow convergence. Damage-
Net inherits its encoder from the convolutional layers of 
VGG-16 (Simonyan and Zisserman, 2014), a deep CNN that 
achieved excellent performance on the large-scale, general-
purpose dataset ImageNet. The adaptation from VGG-16 
enables Damage-Net to conduct transfer learning, which 
ensures the training on relatively small-scale datasets to 
gain improved convergence and high efficiency. 

The architecture of Damage-Net is illustrated in Figure 
5. Four skip connections are introduced to effectively 
integrate multiscale information for delicate boundary 
construction. Damage-Net has 28.8 million parameters in 
total, and 14.7 million parameters are inherited from VGG-
16. 

4.3 Training of Damage-Net 

Two CNN models, denoted as 4Category-Net and Crack-
Net, are optimized separately by the training set of 
4Category datasets and Crack datasets, respectively. The 
models are evaluated on aspects of resource consumption 
(i.e., computing time and memory usage) and recognition 
performance. The recognition performance of a model is 
evaluated on the test set using well-known metrics 
including per-category intersection-over-union (perIoU) 
and mean intersection-over-union (MIoU). The detailed 
formulation and explanation of these metrics can be found 
in Garcia-Garcia et al. (2017). In this study, the MIoU was 
considered as the major indicator for evaluation of the 
accuracy, since it is arguably the most used and accepted 
metric due to its representativeness and simplicity. 

The proposed damage detection, consisting of dataset 
generation, data balancing and training and inference of 
CNNs (see Figure 4), was implemented in Python3 
programming language, where modules of image 
transformations for dataset generation were coded based on 
scikit-image library (Van der Walt et al., 2014), and CNN-
related modules were coded based on PyTorch library 
(Paszke et al., 2019). 

4.3.1 Application of transfer learning 
Transfer learning (Yosinski et al., 2014) is a technique for 
training CNNs on relatively small-scale datasets with 
limited computing resources. In brief, transfer learning is 
the application of certain parameters from a pretrained 
model into the target model, where part of the architecture 

 
 FIGURE 5. The architecture of the proposed Damage-Net. 
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is shared between the two models. Most commonly, the 
pretrained model is the one trained on large-scale datasets 
(e.g., ImageNet), and thus tends to preserve broad 
generalization and possess excellent recognition of basic 
visual features. There are two strategies of transfer learning 
that can be deployed while training a CNN. The first one is 
referred to as the fine-tuning strategy, where parameters 
transferred from the pretrained model are updated 
iteratively using a small learning rate. The second one is 
called the feature-extractor strategy, where transferred 
parameters are fixed (i.e., frozen), and only the newly 
configured and randomly initialized parameters of the 
target model are optimized during the training. 

Numerical tests were carried out to analyze the 
differences in performance, computing time and memory 
usage among the CNNs trained without transfer learning 
(i.e., from scratch) and with two different transfer learning 
strategies. The models were trained on the restricted 
datasets under the same configuration of base learning rate 
𝛼𝛼 = 1 × 10−5 , maximum iterations 𝑛𝑛 =  60000, 32 batch 
size and RMSProp algorithm with hyper-parameter 𝛿𝛿 = 
0.99. To prevent overfitting, L2 regularization was added to 
the loss function, where the regularization strength was set 
to 0.002. The difference among these models was how to 
initialize and update the parameters. As for the from-
scratch model, all the parameters were randomly initialized 
and iteratively optimized during training. For the two 
transfer-learning models, transferred parameters were 
initialized from the corresponding VGG-16 layers, while the 
rest were randomly initialized. During the training, 
transferred parameters in the fine-tuning model were 
updated with a smaller learning rate (i.e., 1% of the base 
learning rate), and the ones in the feature-extractor model 
were fixed. 

Comparisons of resource consumption and recognition 
performance among the three models are shown in Table 4 
and Figure 6. While the from-scratch model was less 
accurate, both transfer-learning models showed 
considerably similar detection accuracy. For computational 
efficiency, the feature-extractor strategy is more favorable, 
since this strategy resulted in a training time at least 25% 
shorter and a memory usage 25% less than training from 
scratch or the fine-tuning strategy. 

4.3.2 Benefits of background-extended 
datasets 

Two types of models were trained to demonstrate the effects 
of the extended datasets. The model 4Category_Rst-Net and 
Crack_Rst-Net (i.e., the Rst-Nets) were trained on the 
restricted dataset 4Category-DS and Crack-DS, respectively, 
while the model 4Category_Ext-Net and Crack_Ext-Net 
(i.e., the Ext-Nets) were trained simultaneously on the 
paired restricted and extended datasets, where the batch 
was constructed through stratified sampling. Curves of the 
loss function value and the MIoU on the test set of restricted 
datasets are plotted in Figure 7, which indicates comparable 
performance on damage recognition between the 
4Category_Rst-Net (Crack_Rst-Net) and 4Category_Ext-
Net (Crack_Ext-Net). In order to compare background 
recognition performance of Rst-Nets and Ext-Nets, several 
photos that were not contained in the database were used 
for damage detection by these models in Figure 8. A large 
photo was divided into a number of standard-size patches 
using overlap-tile strategy adopted from Ronneberger et al. 
(2015). The patches were analyzed by the trained models, 
and finally assembled as an entire output image. The fact 

TABLE 4. Computing resources required by models trained from 
scratch, with fine-tuning and feature-extractor strategy. 

Network Strategy 
Computing time 
per iteration / ms 

Memory usage 
per sample / Mb 

4Category-
Net 

From scratch 1647 820 
Fine-tuning 1760 820 

Feature-extractor 1227 626 

Crack-Net 
From scratch 1600 813 
Fine-tuning 1707 813 

Feature-extractor 1220 619 
 

 

 

 

 
(a) Loss of 4Category-Net  (b) Loss of Crack-Net 

 

 

 

 
(c) MIoU of 4Category-Net  (d) MIoU of Crack-Net 

 FIGURE 6. Performance comparison of models trained from scratch, 
with fine-tuning and feature-extractor strategy. 
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that the Ext-Nets surpassed Rst_Nets in distinguishing 
background from damage areas (see the areas highlighted 
with dashed-line boxes in Figure 8) suggests the success of 
the method proposed to improve background recognition. 

4.4 Performance evaluation of Damage-Net 

Several models were trained using Adam and RMSProp 
algorithms separately, with various training configuration 
(i.e., the learning rate, the hyper-parameters of Adam and 
RMSProp). Afterwards, the models that had the highest 
MIoU on the corresponding test sets were selected as the 
final 4Category-Net and Crack-Net used for subsequent 
analysis in this paper. For the final 4Category-Net and 
Crack-Net, metrics on the test sets of 4Category-DS and 
4Category_Ext-DS, Crack-DS and Crack_Ext-DS are 
summarized in Table 5, respectively. Both models achieved 

satisfactory performance with MIoU over 70%. However, as 
can be noticed from Table 5, the recognition performance 
was lower for the damage categories than for background 
category. Further investigation is required in terms of 
architecture design and training strategies to improve the 
performance of the proposed 4Category-Net and Crack-Net, 
especially for the detection of exposed rebars and cracks. 
Several samples from the test sets of 4Category-DS and 
Crack-DS are demonstrated in Figure 9 to visualize the 
recognition performance of the 4Category-Net and Crack-
Net. 

4.5 Post-processing 

Crack width is an important index to estimate the damage 
state of RC components. Crack-Net can detect cracks and 
track crack paths, but it has difficulties in delineating the 
boundaries of cracks. Crack-Net tends to extract a crack 
together with borders surrounding it, and thereby 
overestimates the crack width. A post-processing technique 
is proposed in this study to cope with this issue. 

 

 

 
(a) Loss of 4Category-Net  (b) Loss of Crack-Net 

 

 

 
(c) MIoU of 4Category-Net  (d) MIoU of Crack-Net 

 FIGURE 7. Performance comparison of models trained with only Rst-
Dataset and with both Rst- and Ext-Dataset. 

Outputs of Rst-Nets  Outputs of Ext-Nets 

 

 

 
   

 

 

   
 FIGURE 8. The outputs of photos predicted by Rst-Nets and Ext-Nets. 

TABLE 5. Performance of the final models. 

Network Category perIoU /% Category perIoU /% 

4Category-
Net 

Background 97.97 Crushing 66.03 
Spalling 71.39 Buckling and 

Fracture 
71.19 

Exposure 49.01 
MIoU /% 71.12 

Crack-Net 
Background 98.59 Crack 41.63 

MIoU /% 70.11 
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Figure 10 illustrates the flowchart of the proposed post-
processing technique. The basic idea is to use the output of 
Crack-Net as a mask for crack detection, and the 
boundaries of cracks can further be determined through the 
contrast of gray levels between crack-pixels and 
background-pixels. The original image and the output of 
Crack-Net are overlapped to construct a masked image (see 
Image II in Figure 10), and then Histogram Equalization 
with Mask algorithm (Scikit-image, 2019) is conducted to 
improve the global contrast of the masked image. 
Afterwards, Otsu’s thresholding (Otsu, 1979) is applied to 
the equalized masked image (see Image III in Figure 10) to 
refine the boundaries of the detected cracks. The proposed 
technique is named Threshold after Histogram 
Equalization (TaHE). 

Afterwards, a filter-based algorithm (Ji et al., 2020) is 
used to quantify the geometric properties of the detected 
cracks. Figure 11 compares the width of cracks depicted in 
the images of (manual) annotation, (the output of) Crack-
Net and (the result of) Crack-Net-and-TaHE in Figure 10. 
Through the proposed post-processing, the Crack-Net-and-
TaHE result correlated well with the annotation (i.e., the 
ground truth), while the pure Crack-Net output led to 
significant overestimate of the crack width. The analysis 
results suggest the effectiveness of the proposed TaHE. 
Note that, subtle cracks, circled with red dashed lines in 
Image I in Figure 10, tend to be removed by TaHE, although 
are well detected by Crack-Net. Since wide cracks, 
compared with subtle cracks, have a dominating influence 
in the damage state estimation of RC components, omission 
of subtle cracks would not affect the post-earthquake safety 
assessment results. 

5 APPLICATION ON STRUCTURAL 
SPECIMEN PHOTOS 

The ability of the proposed vision-based models to detect 
damage and estimate damage states is demonstrated based 
on a series of test photos. The photos were taken from full-
scale quasi-static tests conducted to study the cyclic 
behavior of a steel beam-to-RC wall joint (Leong, 2017). In 
the test specimen, a steel coupling beam was anchored to a 
short steel column embedded in the boundary element of a 
RC wall. Figure 12(a) shows the reinforcement details of the 
joint whose strength was designed according to Ji et al. 
(2019). The wall was rigidly clamped to the reaction floor, 
while cyclic shear load was applied to the steel cantilever 
beam to produce loading environment of a beam-to-wall 

     
(a) Test samples from 4Category-DS 

     
(b) Annotation 

     
(c) Outputs of 4Category-Net 

 

 

     
(d) Test samples from Crack-DS 

     
(e) Annotation 

     
(f) Outputs of Crack-Net 

 

 FIGURE 9. Visualization of test samples. 

 
FIGURE 10. Flowchart of the proposed Threshold after Histogram 
Equalization (TaHE). 

 
FIGURE 11. Comparison of crack width analyzed from Annotation, 
Crack-Net and Crack-Net-and-TaHE. 
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joint. Figure 12(b) presents the hysteretic and envelope 
curves of the beam shear force-beam rotation relationship 
obtained from the test. The rotations at yield load and peak 
load (i.e., 𝜃𝜃y  and 𝜃𝜃p ) are identified in the figure. The 
specimen failed in panel shear failure mode of the joint, and 
the observed damage included concrete cracking and 
concrete spalling in the joint panel, and exposure of 
reinforcement. 

A series of photos at various loading levels (see Figure 
13(a)) were used as the inputs to Damage-Net for pixel-level 
damage detection. Note that in post-earthquake 
assessment, the visible damage is obtained after the 
earthquake shaking, rather than at the peak transient 
displacement. To mimic the assessment condition, each 
loading level was represented by a photo taken at the 
unloaded point after completing the cycles. Perspective 

transformation was utilized as pre-processing for lens 
distortion correction of the original photos, and the 
conversion factor between pixel-unit and engineering-unit 
was further derived from the corrected photos via markers 
mounted on the specimen. The photos were analyzed by 
4Category-Net and Crack-Net separately, and the outputs 
were integrated to produce the ultimate semantic 
segmentation results visualized in Figure 13(b). 
Afterwards, the post-processing technique TaHE was 
applied to refine the crack boundaries. Cracks and spalling 
of concrete, which were prominent in this test specimen, 
were further quantified from the Damage-Net output. The 
spalled area was calculated by summing the pixels of the 
spalling category detected by 4Category-Net from each test 
photo. The development of spalled area at various loading 
levels is plotted in Figure 13(c), where the spalled area ratio 

 
(a) Geometric dimensions and reinforcement details (unit: mm) 

 

 
(b) Hysteretic and envelope curves 

 

 FIGURE 12. Reinforcement details and cyclic test results of beam-to-wall specimen. 

     

 

(a) Test photos 

     

 

 
(b) Semantic segmentation results 

 

 
(c) Spalled area 

 

 

 

 

  

(d) Statistic distribution of crack 
properties 

 

 FIGURE 13. Application to a beam-to-wall joint test. 
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is calculated as the portion of spalled area in the joint panel. 
Labeling and quantification of cracks needs specific image 
processing techniques. In this study, the crack fields 
identified by Crack-Net and TaHE were further separated, 
labeled and quantified by the crack quantification 
algorithms developed by the authors (Ji et al., 2020). Using 
the algorithms, geometric properties (i.e., crack length, 
width and angle) of each crack were calculated. Statistical 
distributions of these geometric properties of cracks are 
shown in Figure 13(d). 

Per Japanese provisions (MLIT, 2015), damage states of 
components or joints can be determined through visible 
damage (as illustrated in Figure 1). At 2.4% and 3.2% beam 
rotation, the majority of cracks were 1-2 mm in width and 
spalled area ratio was less than 10%, which corresponds to 
damage state DS III (see Figure 1). At 4.0% beam rotation, 
the spalled area ratio increased to 15% and horizontal 
reinforcement was exposed. At 4.8% and 5.6% beam 
rotation, spalled area ratio reached approximately 50%, and 
multiple rebars were exposed. However, neither crushing of 
concrete nor buckling and fracture of rebar was detected. 
Therefore, the specimen, at 4.0% to 5.6% beam rotation, 
corresponds to DS IV per Japanese provisions (see Figure 
1). On the other hand, the damage states can be examined 
from the envelope curve in Figure 12(b) as well. The beam 
rotations of 2.4% and 3.2% fall into the yield-to-peak 
strength stage, belonging to DS III inferred from Figure 1. 
The beam rotations of 4.0%, 4.8% and 5.6% fall into the post-
peak strength stage, belonging to DS IV. The damage states 
estimated from the vision-based damage detection based on 
Japanese provisions’ criteria correlate well with those 
evaluated from the cyclic response data of the specimen. 
The success of the vision-based approach in this case study 

indicates a potential of its application in post-earthquake 
damage estimation of RC components. 

In addition, the robustness of the proposed approach was 
validated using photos under various shooting conditions. 
Figure 14 shows two examples, where one was taken from 
the side with skewed angle and another was taken from the 
back of the beam-to-wall joint specimen. Obstructions, 
non-uniform lighting and random shadows can be observed 
in the photo of Figure 14(b). The detection results are 
comparable to those of photos with ideal shooting 
conditions (see Figure 13), which suggests that the 
proposed vision-based approach is capable of localizing, 
classifying and segmenting seismic damage with favorable 
accuracy even under unideal shooting conditions. Further 
study is warranted to extend the robustness of the approach 
to a wider range of unideal shooting conditions. 

6 CONCLUSIONS 

In this research, a novel vision-based approach is presented 
for semantic segmentation of seismic damage of RC 
structural components. A database that comprises pixel-
level multicategory annotated images of RC test specimens 
was constructed for semantic segmentation of visible 
damage. Algorithms of computer vision were deployed to 
achieve pixel-level detection of multiple seismic damage 
categories of RC components, including cracking, concrete 
spalling and crushing, reinforcement exposure, buckling 
and fracture. The proposed approach was applied to a series 
of test photos of a beam-to-wall joint that was loaded to 
produce various damage categories, to validate its accuracy 
and effectiveness. The following conclusions are obtained 
from this study. 

(1) Data balancing techniques at the sample and pixel 
levels were proposed/developed to generate a series of 

 

 

 
(a) 

 

 

 

 

 

 
(b) 

 

 FIGURE 14. Damage detection using photos with unideal shooting conditions. 
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datasets from the database. Examples were shown to 
demonstrate how these techniques mitigate data imbalance 
and facilitate the convolutional networks to achieve 
balanced recognition performance for each damage 
category. 

(2) The ability of the CNNs to distinguish the complex 
background from the target damage categories was 
improved by generating separate datasets for background 
category and utilizing stratified sampling to construct the 
training batches. 

(3) A CNN architecture for pixel-level damage detection, 
i.e., Damage-Net, was developed based on the state-of-art 
VGG-16 and U-Net. Through the application of transfer 
learning, improved recognition performance was achieved 
yet with savings of 25% computing time and 25% memory 
usage, compared with training the CNNs from scratch. 

(4) Two models, i.e., Crack-Net and 4Category-Net, were 
optimized separately, the former to detect cracks and the 
latter to detect other four damage categories, i.e., concrete 
spalling and crushing, reinforcement exposure, buckling 
and fracture. Both models achieved satisfactory 
performance with a mean intersection-over-union (MIoU) 
over 70% (70.1% for Crack-Net and 71.1% for 4Category-
Net). 

(5) An effective yet simple post-processing technique, 
i.e., Threshold after Histogram Equalization (TaHE), was 
developed to refine the boundaries of cracks detected by 
Crack-Net, and thereby enable subsequent characterization 
of cracks to be accurate. 

Room for improvement exists in the proposed vision-
based damage detection: (1) Field-survey photos should be 
included into the database and delicate transfer learning 
techniques should be investigated, in order to enable 
damage detection for real post-earthquake field surveys; (2) 
Effective design and training strategies should be explored 
to improve the recognition performance of the proposed 
CNNs, especially for exposure of reinforcement category; 
(3) The number of parameters in Damage-Net is relatively 
large, therefore, more compact architectures should be 
further developed to decrease the computational costs of 
application. 

This study contributes to the development of a vision-
based safety assessment system for RC buildings. The 
system is aimed at providing quantitative damage detection 
results based on post-earthquake field-survey photos, and 

assisting engineers and inspectors to achieve an efficient 
and accurate safety assessment of damaged building 
structures. A major challenge is to construct a framework 
to correlate damage information at the component level 
with residual performance at the structure level. Two key 
issues need further investigation to construct such 
framework: (1) how to correlate the detected visible damage 
with degradation in mechanical properties (including 
stiffness, strength and deformation capacity) of the 
damaged components, and (2) how to correlate the 
degradation of individual structural components with the 
residual capacity of the structural system. Newly developed 
data-driven classification and regression algorithms (e.g., 
Ahmadlou and Adeli, 2010; Alam et al., 2020; Pereira et al., 
2020; Rafiei and Adeli, 2017) shall be examined as possible 
tools for resolving these issues. 
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